
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CHERI
Capability Hardware Enhanced RISC Instructions

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel, Thomas Bauereiss,

Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs,
Khilan Gudka, Brett Gutstein, Alexandre Joannou, Robert Kovacsics, Ben Laurie, A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi,

Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu,
Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi, Peter Sewell, Thomas Sewell, Stacey Son,

Domagoj Stolfa, Andrew Turner, MunrajVadera, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International
DSbD Software Ecosystem Workshop – 5 October 2021

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

2

Introduction

• An introduction to the CHERI architecture and software stack

• To learn more about the CHERI architecture and prototypes:

http://www.cheri-cpu.org/

• Watson, et al. An Introduction to CHERI, UCAM-CL-TR-941,
September 2019.

• Watson, et al. CHERI C/C++ Programming Guide, UCAM-CL-
TR-947, June 2020.

3

https://www.cheri-cpu.org/

Capability systems
• The capability system is a design pattern for how CPUs, languages,

OSes, … can control access to resources

• Capabilities are communicable, unforgeable tokens of authority

• In capability-based systems, resources are reachable only via capabilities

• Capability systems limit the scope and spread of damage from
accidental or intentional software misbehavior

• They do this by making it natural and efficient to implement, in
software, two security design principles:

• The principle of least privilege dictates that software should run with the
minimum privileges to perform its tasks

• The principle of intentional use dictates that when software holds multiple
privileges, it must explicitly select which to exercise

4

The CAP computer project ran from
1970-1977 at the University of
Cambridge, led by R. Needham, M.
Wilkes, and D. Wheeler.

What is CHERI? (2010-current)
• CHERI is an architectural protection model

• Composes a capability-system model with hardware and software

• Adds new security primitives to Instruction-Set Architectures (ISAs)

• Implemented by microarchitectural extensions to the CPU/SoC

• Enables new security behavior in software

• CHERI mitigates vulnerabilities in C/C++ Trusted Computing Bases

• Hypervisors, operating systems, language runtimes, browsers, ….

• Fine-grained memory protection deterministically closes many arbitrary
code execution attacks, and directly impedes common exploit-chain tools

• Scalable compartmentalization mitigates many vulnerability classes ..
even unknown future classes .. by extending the idea of software sandboxing

• CHERI-RISC-V research architecture and prototype FPGA implementations

• Arm Morello: Industrial scale + quality demonstrator CPU, SoC, board
5

An early experimental FPGA-based
CHERI tablet prototype running the
CheriBSD operating system and
applications, Cambridge, 2013

CHERI PROTECTION MODEL
AND ARCHITECTURE

6

Architectural primitives for software security

7

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity

CHERI design goals and approach
• De-conflate memory virtualization and protection

• Memory Management Units (MMUs) protect by location (address)

• CHERI protects existing references (pointers) to code, data, objects

• Reusing existing pointer indirection avoids adding new architectural
table lookups

• Architectural mechanism that enforces software policies

• Language-based properties – e.g., referential, spatial, and temporal
integrity (C/C++ compiler, linkers, OS model, runtime, …)

• New software abstractions – e.g., software compartmentalization
(confined objects for in-address-space isolation, …)

8

CHERI enforces protection semantics for pointers

• Integrity and provenance validity ensure that valid pointers are derived from other valid pointers via valid
transformations; invalid pointers cannot be used

• Valid pointers, once removed, cannot be reintroduced solely unless rederived from other valid pointers

• E.g., Received network data cannot be interpreted as a code/data pointer – even previously leaked pointers

• Bounds prevent pointers from being manipulated to access the wrong object

• Bounds can be minimized by software – e.g., stack allocator, heap allocator, linker

• Monotonicity prevents pointer privilege escalation – e.g., broadening bounds

• Permissions limit unintended use of pointers; e.g., W^X for pointers

• These primitives not only allow us to implement strong spatial and temporal memory protection, but
also higher-level policies such as scalable software compartmentalization

9

Globals

Data

Heap Stack

Code

Control flow

Monotonicity PermissionsIntegrity and
provenance validity Bounds

Two key use cases for CHERI
1. Efficient, fine-grained memory protection for C/C++

• Good source-level compatibility, but ABI disruptive to binaries

• Supports referential, spatial, and temporal memory safety (with limitations)

• Generally modest overhead (0%-5%, some workloads 10%)

2. Scalable software compartmentalization

• Multiple software operational models from objects to processes

• Orders-of-magnitude performance improvement over MMU-based
techniques (<90% reduction in overhead in early benchmarks)

Other potential – but under-explored – use cases include within managed
language runtimes, and as a substrate for safer inter-language interoperation

10

CHERI C/C++ MEMORY PROTECTION

11

Memory-safe CHERI C/C++
• Capabilities used to implement all pointers

Implied – Control-flow pointers, stack pointers, GOTs, PLTs, …

Explicit – All C/C++-level pointers and references

• Strong referential, spatial, and heap temporal safety

• Minor changes to C/C++ semantics; e.g.,

• All pointers must have well defined single provenance

• Increased pointer size and alignment

• Care required with integer-pointer casts and types

• Memory-copy implementations may need to preserve tags

• Watson, et al. CHERI C/C++ Programming Guide,
UCAM-CL-TR-947, June 2020

12

CHERI-based pure-capability process memory

13

• Capabilities are substituted for integer addresses throughout the address space

• Bounds and permissions are minimized by software including the kernel, run-time
linker, memory allocator, and compiler-generated code

• Hardware permits fetch, load, and store only through granted capabilities

• Tags ensure integrity and provenance validity of all pointers

Memory
StackCode

Heap
Implied
pointer

Explicit
pointer

…

Thread
register

file

PLTs

Globals

captable

DDC

PCC

GPRs

NULL

NULL

NULL

CHERI SOFTWARE
COMPARTMENTALISATION

14

What is software compartmentalization?
• Fine-grained decomposition of a larger

software system into isolated
modules to constrain the impact of
faults or attacks

• Goals is to minimize privileges
yielded by a successful attack, and
to limit further attack surfaces

• Usefully thought about as a graph of
interconnected components,
where the attacker’s goal is to
compromise nodes of the graph
providing a route from a point of entry
to a specific target

15

CheriFreeRTOS components and the application execute
in compartments. CHERI contains an attack within
TCP/IP compartment, which access neither flash nor the
internals of the software update (OTA) compartment.

Shared virtual address space

Register
fileProtection

domain
A

Protection
domain

B

Shared
heap

Domain-specific
captables + PLTs

Domain-specific
stacks

Domain-specific
globals

Heap
allocations

Register
file Domain B

heap

Domain A
heap

Cross-
domain

resources

Shared
code

Implied
pointer

Explicit
pointer

CHERI-based compartmentalization

• Isolated compartments can be created using closed graphs of capabilities,
combined with a constrained non-monotonic domain-transition mechanism

16

Protection
domain A

Protection
Domain B

Flexible set of
shared resources

Opportunities and challenges

• CHERI dramatically improves compartmentalization scalability

• More compartments

• More frequent domain transitions

• Faster shared memory between compartments

• Many potential use cases – e.g., sandbox processing of each image
in a web browser, processing each message in a mail application

• Unlike memory protection, software compartmentalization also
requires careful software refactoring to support strong
encapsulation, and affects the software operational model

17

Proposed operational models:
Isolated libraries and UNIX co-processes

Isolated dynamically linked libraries

• New API loads libraries into in-process sandboxes.
• Calling functions in isolated libraries performs a domain transition, with

overheads comparable to function calls.
• Simple model eschews asynchrony, independent debugging, etc.

UNIX co-processes

• Multiple processes share a single virtual address space, separated using
independent CHERI capability graphs.

• CHERI capabilities enable efficient sharing, domain transition.
• Rich model associates UNIX process with each compartment.

• Active area of research; early prototype available for co-processes

18

CHERI REFERENCE SOFTWARE STACK

19

Porting the CHERI software stack to Morello

• Validate the Morello architecture (functional, sufficient)

• Evaluate the Morello implementation (performance, energy use, …)

• Provide reference software semantics (spatial and temporal safety,
compartmentalization, POSIX integration, OS kernel use, …)

• Act as a template and prototyping platform for industrial
demonstration (e.g., for Morello Consortium partners)

• Provide a platform for future research (e.g., 11 EPSRC projects at
UK universities starting August-October 2020)

20

CHERI prototype software stack on Morello
• Complete open-source CHERI-enabled software stack from bare metal up: compilers,

toolchain, debuggers, operating systems, applications – all demonstrating CHERI ideas

• Rich CHERI feature use, but fundamentally incremental/hybridized deployment

• Aim: Mature and highly useful research and development platform for Morello21

CHERI-extended Google Hafnium hypervisor (Morello only)

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (funded by DARPA and UKRI)
• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Co-process compartmentalization
• Intra-process compartmentalization
• Morello-enabled bhyve Type-2 hypervisor
• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (KDE, X11, WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)
(Morello only)

Linux (Arm)
(Morello only)

Baseline CHERI
Clang/LLVM from
SRI/Cambridge;

Morello
adaptation by
Arm + Linaro

CHERI Reference Software Stack development plan (prospective)

222021 2022

2021Q3 CHERI
software release
(8 September 2021)

Morello support
merged to
development trunk

Spatially safe
(pure-capability)
kernel merged to
development trunk

Morello bhyve
hypervisor support
merged to
development trunk

Temporally safe
userspace heap
merged to
development trunk
(lower certainty)

2022Q1 CHERI software release
(Roughly March/April 2022?)

Co-process userspace
compartmentalization
merged to development
trunk
(lower certainty)

Panfrost Morello
GPU support
merged to
development trunk

How to obtain and install the CHERI software stack
• One build tool to rule them all: cheribuild

https://github.com/CTSRD-CHERI/cheribuild

• Builds, installs, and/or runs:

• QEMU CHERI-RISC-V and Morello, Morello FVP

• CheriBSD/CHERI-RISC-V and Morello disk images

• Small suite of adapted third-party applications

• Up and running with one command (CHERI-RISC-V):

./cheribuild.py --include-dependencies run-riscv64-purecap

23

https://github.com/CTSRD-CHERI/cheribuild

Getting support

• CHERI discussion mailing list (currently pretty quiet)

• cl-cheri-discuss mailing list

• cl-cheri-announce to be announced soon J

• Slack: cheri-cpu.slack.com

• Arm Morello support forum and mailing list on Morello-specific
topics

24

3-month CHERI Desktop pilot study
Assess the viability of a CHERI/Morello-enabled open-source desktop
software stack:

• Select sample open-source stack slice (window server, widget, window
manager, application suite): X11, Qt, KDE, applications

• Implement CHERI C/C++ referential and spatial memory protection

• Whiteboard possible software compartmentalizations

• Evaluate software change as %LoC changed

• Evaluate security via retrospective vulnerability analysis (5 year sample)

• Improve CHERI compiler toolchain as needed

Detailed technical report published in mid-September 2021
25

Results summary
• Adapted XVNC, X11 libraries, supporting libraries (e.g., libpng, …), Qt, KDE, selected KDE

applications

• Roughly 6 million lines of C/C++ code compiled for memory safety, with light dynamic
testing

• Three compartmentalization case studies in Qt/KDE

• Mitigation rates for selected software:

• 91% of X11 security advisories

• 100% of supporting library vulnerabilities (e.g., libpng, libxml2, …)

• 82% of Qt security advisories

• 43% of KDE security advisories

• Plenty of limitations discussed in detail in the report (e.g., language runtimes omitted)

• Lots of details in the technical report on CapLtd website - http://www.capabilitieslimited.co.uk/

26

http://www.capabilitieslimited.co.uk/

CONCLUSION

27

Some potential software research areas
• Clean-slate OSes and languages

Current research has focused on incremental CHERI adoption
within current software and languages. How would we design new
OSes, languages, etc., assuming CHERI as an ISA baseline?

• Compilers, language runtimes, and JITs

How can we mitigate the performance overheads of more
pointer-dense executions, such as with language runtimes? Are
vulnerabilities in code generated by compilers and JIT susceptible
to mitigation using CHERI? How does CHERI break or potentially
improve current compiler analyses and optimization?

• Further C/C++ protections with CHERI

We have focused on spatial, referential, and temporal memory
safety for C/C++. But the CHERI primitives could assist with
data-oriented protections, garbage collection, type checking, etc.
Could these improve security, and at what performance cost?

• Safe and managed languages

Languages such as Java, Rust, C#, OCaml, etc., offer strong safety
properties, but frequently depend on C/C++ runtimes and FFI-
linked native code. Can CHERI provide stronger foundations for
higher-level language stacks?

• Virtualization

Can memory protection usefully harden hypervisors? Can we
compartmentalize hypervisors? Can CHERI offer a better
mechanism for virtualizing code than an MMU?

• Debuggers and tracing

Debugging/tracing tools rely on high levels of privilege to
operate. How can we reduce their privilege to mitigate
vulnerabilities in these tools? With stronger architectural
semantics, is new dynamic analysis possible?

• Software compartmentalization tools

Granular software compartmentalization offers vulnerability
mitigation through privilege reduction and strong encapsulation.
How should current applications be refactored, and new
applications be designed, to accomplish maintainable and more
secure software?

• Security evaluation and adversarial research

What is the impact of CHERI on known vulnerabilities and
attack techniques? How does a CHERI-aware attacker change
their behavior? Could formal models and proofs support
stronger security arguments for CHERI?

28

Conclusion
• New architectural primitives require rich HW and SW evaluation:

• Primitives support many potential usage patterns, use cases

• Applicable uses depend on compatibility, performance,
effectiveness

• Best validation approach: full hardware-software prototype

http://www.cheri-cpu.org/

• Watson, et al. An Introduction to CHERI, Technical Report
UCAM-CL-TR-941, Computer Laboratory, September 2019.

• Watson, et al. CHERI C/C++ Programming Guide, UCAM-CL-
TR-947, June 2020. 29

https://www.cheri-cpu.org/

30

